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An approximate method for analyzing the free vibration of thin and moderately
thick rectangular plates with arbitrary variable thickness is proposed. The
approximate method is based on the Green function of a rectangular plate. The
Green function of a rectangular plate with arbitrary variable thickness is obtained
as a discrete form solution for deflection of the plate with a concentrated load.
The discrete form solution is obtained at each discrete point equally distributed
on the plate. It is shown that the numerical solution for the Green function has
good convergency and accuracy. By applying the Green function, the free
vibration problem of the plate is translated into the eigenvalue problem of the
matrix. The convergency and accuracy of the numerical solutions for the natural
frequency parameter calculated by the proposed method are investigated, and the
frequency parameters and their modes of free vibration are shown for some
rectangular plates.

© 1998 Academic Press

1. INTRODUCTION

The fundamental differential equations of free vibration of plates with variable
thickness have variable coefficients concerning the flexural rigidity and thickness
of the plate, and generally it seems almost impossible to get the analytical solution.

For some cases of variable thickness of a rectangular plate, investigations have
been made and solutions have been obtained. Appl and Byers [1] investigated the
case when the thickness varied only in one direction, and calculated the
fundamental frequency of a simply supported rectangular plate having a linear
thickness variation, and Plunkett [2] investigated the free vibration of linearly
tapered rectangular cantilever plates. After that, a number of papers were
published on the free vibration of rectangular plates with stepped thickness [3, 4],
with linearly varying thickness [5—13], with bilinearly varying thickness [14, 15] and
with thickness varying in two directions [16].

In this paper, an approximate method for generally analyzing the free vibration
of thin and moderately thick rectangular plates with arbitrary varying thickness
is proposed. At first the approximate solutions of a rectangular plate with variable
thickness for a concentrated load are obtained at the discrete points equally
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distributed on the plate. The solution for deflection gives the discrete-type Green
function of the plate. It is shown that the numerical solution for the Green function
has good convergency and accuracy.

By applying the Green function, the free vibration problem of the plate is
translated into the eigenvalue problem of the matrix. For some rectangular plates
with various boundary conditions and a plate with variable thickness the
convergency and accuracy of the numerical solutions for the natural frequency
parameter calculated by the proposed method are investigated, and the lowest 16
frequency parameters and their modes of free vibration are shown.

2. DISCRETE GREEN FUNCTION OF A PLATE WITH VARIABLE THICKNESS

The Green function of the plate bending problem is given by the displacement
function of the plate with a unit concentrated load, so the Green function
w(x, ¥, x,, y,)/P of plates with variable thickness can be obtained from the
fundamental differential equations of the plate with a concentrated load P at a
point (x,, y.), which are given by following equations

00 20, pi o aM, oM.
ox + oy + Pé(x — x,)0(y — y,) =0, PR P 0,=0 (la,b)

oM, oM., , 00. a0, M. a0, 30._M, .
x Ty =0 Hta =D Htv'a-p U9
0, 0, 2 My, aw._, O  ow._, O .
vt ad=wobp’ uth=¢, &HTlh=g (0D

where Q,, Q, are the shearing forces, M,, is the twisting moment, M., M, are the
bending moments, 6., 6, are the slopes, w is the deflection, D = ER*/12(1 — v?) is
the bending rigidity, E, G are the modulus and shear modulus of elasticity, v is
the Poisson ratio, & = h(x,y) is the thickness of the plate, and ¢ = h/1-2,
o(x — x,), 0(y — y,) represent Dirac’s delta functions.

By introducing the following non-dimensional expressions,

2

[XlaXZ] D(l 2)[Q}7Q] [X33X45X5] m[M\HMMM]

[Xfw X7’ Xg] = [0)'9 Bxa W/Cl],

the differential equations (l1a)—(1h) can be rewritten as follows:

8
Z |:F1te aC + F2te aa?; + F@te €:| + Pa(’/l - ntl)a(é - Cl‘)élf = O’ (2)

where t =1~ 38, u=bl/a, n=x/a, { = y/b, Dy = Ehj/12(1 — v*) is the standard
bending rigidity, 4, is the standard thickness of the plate, a, b are the breadth and
length of the rectangular plate, P = Pa/D,(1 — v?), §, is Kronecker’s delta and F,.,
F,., F;. are given in Appendix A.
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3. DISCRETE SOLUTION OF FUNDAMENTAL DIFFERENTIAL EQUATION

With a rectangular plate divided vertically into m equal-length parts and
horizontally n equal-length parts, as shown in Figure 1, the plate can be considered
as a group of discrete points which are the intersections of the (m + 1)-vertical and
(n + 1)-horizontal dividing lines. In this paper, the rectangular area, 0 < n < #;,
0 < { <, corresponding to the arbitrary intersection (7, j), as shown in Figure 1,
is denoted as the area [i, j], the intersection (7, j) denoted by © is called the main
piont of the area [i,j], the intersections denoted by (O are called the inner
dependent points of the area, and the intersections denoted by @ are called the
boundary dependent points of the area.

By integrating equation (2) over the area [i,/], the following equation is
obtained.

s ) 3

Flm J\ ’v [X(na gj) - X(’/Ia 0)] d’/] + Fzmj [K(’/Ila C) - X(O: Cj)] dC

0

ni (6
+ sz J X.(n, ) dn dl
0 0

+ Pu(n — n)u( — ()0, =0, (3)

where u(n —#,), u({ — {,) is the unit step function.

Next, by applying the numerical method, the simultaneous equation for the
unknown quantities X.; = X.(n;, {;) at the main point (i, j) of the area [i, /] is
obtained as follows.

8 i j i
Z {Flte Z ﬂik(Xe/cj - XF/(O) + FZte Z ﬁ/’/’(Xei/’ - Xe()/) + FSIe Z Z ﬁikﬁ/’/Xek/}
e=1 k=0 3

=0 k=0/=0

+ Puiqujréll = Oa (4)
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Figure 1. Discrete points on a plate.
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where
0 (i<gq) 0 (<
=105 (i=q). w=]05 (=),
1 (i>q) 1 (G>r)
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ﬁ/\ OC,/(/WI, ﬁ// OC1//}/1

The solution X,; of the simultaneous equation (4) is obtained as follows.

i

J
Z ﬁikApe[XekO - Xekf(l - 5/(1')] + Z ﬂf/B[IE[XL’O/ - Xei((l - 5//’)]
/=0

k=0

8
Xﬂi/’ = Z - .
e=1 i J
+ Z Z ﬂikﬂ//cj)ek/ka/(l — 5ki5(/‘)
k=

k=0/=0

— Y Puiyiy, (5

where p=1,2,....8,i=1,2,....m,j=1,2,....,n, Ay, Bo, Courr, ¥, are given
in Appendix B.

In equation (5), the quantity X,; at the main point (7, j) of the area [i, j] is related
to the quantities X, and X, at the boundary dependent paints of the area and
the quantities X, X.» and X, at the inner dependent points of the area. With
the spreading of the area [i,j] according to the regular order as [I, 1],
[1,2],....[1,n],[2,1],[2,2],....2, 1], ....[m,1], [m,2],...,[m,n], a main point
of smaller area becomes one of the inner dependent points of the following larger
areas. Whenever the quantity X,; at the main point (i, j) is obtained by using
equation (5) in the above mentioned order, the quantities X.;, X.» and X, at the
inner dependent points of the following larger arecas can be eliminated by
substituting the results obtained into the corresponding terms of the right side of
equation (5). By repeating this process, the equation X,; at the main point is related
to only the quantities X, (r =1,3,4,6,7,8) and X, (s = 2, 3, 5, 6,7, 8) which
are six independent quantities at each boundary dependent point along the
horizontal axis and the vertical axis in Figure 1 respectively. The result is as
follows.

Y. = i Aipiet (O ko + Arpir (M oy Yo + Qpiiis (M o
n ol T A1pigea (0, k0 + Aipis (0o + Aipies (W ko

J
Wi (O )or + Qopiirr(M y Yor + @opijrs(M)os -
+ + g, P 6

/g‘o { + a2p[/'/4(9y)0/ + aZp[j/'S(gx)Ol + piiee(W)or " ©)
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where (Q\) = Xla (QV) = XZ’ (M‘C)) = X3a (My) = X4’ (MV) = XS’ (0)) = XG:
0,) = X7, (w) = Xs, g,y is given in Appendix C. Equation (6) gives the discrete
solution [17] of the fundamental differential equation (2) of the plate bending
problem, and the discrete Green function of the plate is obtained from X; = G(x;,
Vis Xg» ¥r) - [Pa/Do(1 — v*)] which is the displacement at a point (x;, y;) of a plate
with a concentrated load P at a point (x,, y,).

4. INTEGRAL CONSTANT AND BOUNDARY CONDITION OF A
RECTANGULAR PLATE

The integral constants (Q,)w, (M )05 - - - (W, (Qx)ors (My)ors - - - (W), being
involved in the discrete solution (6) are to be evaluated by the boundary conditions
of a rectangular plate. The combinations of the integral constants and the
boundary conditions for some cases are shown in Figures 2—4, in which the integral
constants and the boundary conditions at the four corners are shown in the boxes.
The integral constants and the boundary conditions along the four edges are given
at each equally-spaced discrete point. In this paper simply supported, fixed and
free edges are denoted by a solid line, a thick solid line and a dotted line,
respectively.

M,y M, =0, =w=0 0,=6,=w=0
Qy M, =0

M,y 0,=0

0y w=0

M.y Qy My By M,y

Figure 2. Simply supported plate.

M 6,= 6,=w=0 0,=0,=w=0

O
X
S
<
I}
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< Z
s o
1|
o o

M Qy:M,,,M, Myy

Figure 3. Fixed plate.
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Qy:Mxy:My:O
0,6,w | Q=M =M =0 6,=06,=w=0
b, | 0,0
0)( : 0)(:0
W w=0
6,0, w 6,0, w

Figure 4. Cantilever plate.

5. CHARACTERISTIC EQUATION OF FREE VIBRATION OF A
RECTANGULAR PLATE WITH VARIABLE THICKNESS

By applying the Green function w(x,, o, X, ¥)/P which is the displacement at
a point (xy, yo) of a plate with a concentrated load P at a point (x, y), the
displacement amplitude w(x,, o) at a point (x,, yy) of a rectangular plate during
the free vibration is given as:

l/f/(X(), yO) = J J phafvf/(x, y)[W(Xo, Yo, X, y)/l_)] dx dya (7)

where p is the mass density of the plate material.
By using the non-dimensional expressions,

i _ _pohyw’a’ _ p(x,p) h(x, ») _W(x,p)
i - Do(l _ v2)a H(na C) - pO ho s W(na C) - a s

> 5 Ny D 1_ g
G, Lo, 1, ) = 10 Yot 2 O(Pa v,

po: standard mass density, the integral equation (7) can be rewritten as:

W(no, L) = j J uAtH(n, G (no, Lo, n, OW(n, §) dn dC. (®)

By applying the numerical integration method mentioned in section 3, equation
(8) is discretely expressed as

m n

KWy = Z Z BoniBuiH;Grrs Wi, k= 1/(ui*. ©)

i=0j=0
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From equation (9), homogeneous linear equations in (m + 1) x (n + 1) unknowns
Woo, Wo], e ,Won, W](), W]], e ,W]n, ~, Wmo, Wn], e ,VV,,m arc Obtained as
follows:

M=

(ﬂmiﬂnjHiij/ij — Kaikéj/) I/Vij =0, (k =0, 1, o.oam, £=0,1,... JZ).
0
(10)

The characteristic equation of the free vibration of a rectangular plate with
variable thickness is obtained from equation (10):

n

i=0j

Koo K01 Koz T KOm
K]o Kn Klz e Klm 0 11
Kzo K21 K22 T sz o ( )
KmO Kml Km2 e Kmm
where
i BuoHpGijo — K05 B Hi Gy
ﬁnoI‘I/OGil,'o ﬁnll—ljl Giljl — K(Si/
K = By BuoH Gy Bt Hi Gy
ﬂn()[{j() Gin/'O ﬁnl Hfl Gin./'l
BrHpGiop T Bontlin Giojn |
ﬁanI/ZGiI/Z T ﬁnnli/'nGil/n
ﬂnzl'lsz,'zjz — Ka,'j e ﬂrmPIjnGiZjn
ﬁnZH/ZGian T ﬁnnP[jnGinjn - K5U a

6. NUMERICAL WORK

The convergency and accuracy of numerical solutions have been investigated for
the free vibration problem of some rectangular plates with uniform thickness and
a rectangular plate with variable thickness.

The convergent values of numerical solutions of frequency parameter for these
plates have been obtained by using Richardson’s extrapolation formula for two
cases of combinations of divisional numbers m and n.

6.1. CONVERGENCY AND ACCURACY OF NUMERICAL RESULTS FOR PLATES WITH
UNIFORM THICKNESS
6.1.1. Simply supported square plate and rectangular plate

Numerical solutions for the lowest 16 values of the natural frequency parameter
A of a simply supported square plate and a rectangular plate of aspect b/a = 2 are
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TABLE 1
Natural frequency parameter 4 for a simple rectangular plate

bla=1 bla=?2
r A N\ ~ A A
m m
— Extra-  Reference — Extra-  Reference
Mode 12 16 polation [18] 12 16 polation [18]

1 4574  4-563 4-548 4-549 3-617  3-608 3-:596 3-596
2 7-333 7270 7-188 7-192 4-615 4-585 4-547 4-549
3 9:306 9211 9-089 9-098 6:029 5924 5-789 5-799
4 10-672 10-442  10-146 - 6778 6712 6-627 6-631
5 10-:672 10-442  10-146 - 7-793  7-511 7-148 7-192
6 12110 11-873  11-569 11-597 7-359 7284 7-187 7-192
7 14-530 13-931 13-161 13262 8318 8-192 8-:030 8-:041
8 14-374 14-037 13-603 13-647 9961  9:326 8511 8-661
9 15614 15:032 14-282 — 9-672 9403 9-056 9-098
10 15614 15-032 14-282 - 12:691 11-402 9-745 10-172
11 17-424 16:789 15972 16:083  10-299 10-062 9798 9-782
12 19-083 17769  16-079 — 10-689 10:451 10-146 10-172
13 19-083 17769 16-079 - 11-489 10906 10-156 10-298
14 19-918 18642 17-001 17-322 11370 11-102  10-757 10-789
15 20-009 19-145 18-033 18196 13921 12:725 11-187 11-597
16  21-360 20-081 18-436 - 12:393  12:022  11-545 11-597

shown in Table 1. The thickness ratio /,/a of these plates is 0-01. The convergent
values of numerical solutions were obtained by using Richardson’s extrapolation
formula for the two cases of divisional numbers m (=n) of 12 and 16 for the whole
part of the rectangular plate. Table 1 includes the past theoretical values of Leissa
[18], and it shows the good convergency and satisfactory accuracy of the numerical
solutions using the present method. The nodal lines of 16 modes of free vibration
of the two plates are shown in Figure 5.

I
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=
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13th  14th 15th  16th
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NI 1IN 88 ] m
< K =M
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Figure 5. Nodal patterns for a simply supported plate. (a) Square plate; (b) rectangular plate
(b/a =2).
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TABLE 2
Natural frequency parameter 1 for a fixed rectangular plate

bla=1 bla=2
A A
m Reference r m
— Extra- P A N g A N Extra- Reference
Mode 12 16  polation [19] [20] 12 16  polation [19]

1 6:205 6-175 6-138  6-142 6:066 5-133 5107  5-073 5-076
2 9-030 8911 8756 8771 8742 5883 5834 5771 5776
3 10985 10-829 10-629 10-651 10-614 7-175 7-024  6-829 6-851
4 12533 12-162 11-686 11-745 11-747 8970 8573  8-064 8-148
5 12563 12-191 11714 11772 - 8475 8344 8176 8:190
6 13910 13-552 13-091 13-152 13-127 8923 8789 8617 8-632
7
8
9
10

s A

16690 15-803 14-663 14-856 14-849 11-305 10-430  9-305 9-564
16:194 15717 15105 - 15163 9-743  9-558  9-320 9-343
17-655 16-817 15741 15933 15934 11-023 10-667 10-209 10-279
17-697 16-856 15774 - - 14-372 12-611 10-347 -
11 19421 18551 17-432 - 17-606 18-600 15-193 10-813 11-044

12 21676 19-825 17-446 - - 12-892 12-134 11-160 -
13 21-684 19-833 17-454 - - 12-196 11-808 11-309 -
14 22-409 20-633 18-351 - - 12-505 12-123 11-632 -
15 22:063 20929 19471 - 19-712 15-565 13992 11-970 -
16 23707 21982 19-765 - - 13-074 12-672 12-155 -

6.1.2. Fixed square plate and rectangular plate

Numerical solutions for the lowest 16 values of the natural frequency parameter
4 of a fixed square plate and a rectangular plate of aspect ratio »/a = 2 are shown
in Table 2. The thickness ratio /,/a of these plates is 0-01. The convergent values
of numerical solutions were obtained for the two cases of divisional numbers m
(=n) of 12 and 16 for the whole part of the plate. Table 2 includes the other
theoretical values by Claassen and Thorne [19] and Bolotin [20]. The numerical
solutions using the present method have good convergency and satisfactory

Ist 2nd 3rd 4th
1st 2nd 3rd 4th -
O
5th  6th  7th  8th 5th 6th 7th 8th
>< TN 38{
N

9th  10th  11th  12th 1|

T 9th 10th 11lth 12th
%3

13th  14th  15th  16th

fijE:

14th 15th 16th

(a) (b)
Figure 6. Nodal patterns for a fixed plate. (a) Square plate; (b) rectangular plate (b/a = 2).

-
w
(=i
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TABLE 3
Natural frequency parameter A for a cantilever rectangular plate

bla=1 bla=2
A A
T m Reference r m A
——t— Extra- . A N A N Extra- Reference
Mode 12 16 polation [21]  [22] 12 16  polation [21]

1 1909  1-908 1906 1908 1914 1915 1914 1913 1-914
2 2990 2987 2982 2994 2993 2372 2:370  2:366 2:375
3 4783 4756 4721 47724 4741 3294 3-281  3-264 3-273
4 5399 5372 5337 5340 5365 4605 4543  4-465 4-463
5 5756 5724 5684 5710 5716 4849 4-820 4783 4791
6 7-640  7-588 7-521 7545 - 5-155 5-122 5:080 5-099
7 8305 8-171 7999 8016 - 5-846 5-800  5-741 5-746
8 8478 8354 8195 8204 - 6354 6173 5939 5979
9 8913 8776 8601 8633 - 6907 6-818  6:705 6729
10 10-179 10-027 9-830 - - 8310 7912  7-400 -
11 10-389 10-244  10-059 - - 8192 8011 7779 -
12 11999 11-614 11-119 - - 8:333 8190  §-007 -
13 12-259 11-863  11-355 - - 8-531 8345  §-107 -
14 12404 12-043 11-578 - - 8943 8-803  8-623 -

10-764 9-938  8-876 -
9-704 9-445 9111 -

15 12:606 12-348 12-016 -
16 13-338 12952 12:457 -

accuracy. The nodal lines of 16 modes of free vibration of the two plates are shown
in Figure 6.

6.1.3. Cantilever square plate and rectangular plate

Numerical solutions for the lowest 16 values of the natural frequency parameter
A of a cantilever square plate and a rectangular plate of aspect ratio b/a = 2 with
uniform thickness are shown in Table 3. The thickness ratio //a of these plates
is 0-01. The convergent values of the numerical solutions were obtained for the

) — o] — -
~ Ist 2nd 3rd 4th
1st . 2nd_ 3rd_ 4th 17171 23
); ( (O o N R
[ A BV B
] 5th 6th 7th 8th
5th  6th  7th  8th ety =1 a] mr
e Haldll
- - v =1 24 1L
oth  10th  11th  12th 9th 10th 11th 12fh
e J i —_—tey - e - Y
L_ H i N4 =
=R =T
0. frmme ! 1 i A
13th  14th  15th  16th AN N 7

13th 14th 15th 16th
(a) (b)

Figure 7. Nodal patterns for a cantilever plate. (a) Square plate; (b) rectangular plate (b/a = 2).
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two cases of divisional numbers m (=n) of 12 and 16 for the whole part of the
plate. Table 3 involves the other theoretical values by Claassen and Thorne [21]
and Young [22]. The numerical solutions by the present method have good
convergency and satisfactory accuracy. The nodal lines of 16 modes of free
vibration of the two plates are shown in Figure 7.

6.1.4. Moderately thick square plate with uniform thickness

Numerical solutions for the lowest 16 values of the natural frequency parameter
A of a simply supported square plate and a fixed square plate of thickness ratio
ho/a = 0-2 are shown in Table 4. The convergent values of numerical solutions
were obtained by using Richardson’s extrapolation formula for the two cases of
divisional numbers m (=n) of 12 and 16 for the whole part of the plate. Table 4
involves the other theoretical values by Liew er al. [23] and it shows good
convergency and satisfactory accuracy of the numerical solutions by the present
method. The nodal lines of free vibration of these two plates with moderate
thickness are the same as those in Figure 5(a) or Figure 6(a).

6.2. NUMERICAL RESULTS FOR PLATES WITH VARIABLE THICKNESS

6.2.1. Simply supported square plate and rectangular plate

Numerical solutions for the lowest 16 values of the natural frequency parameter
A of a simply supported square plate and a rectangular plate of aspect ratio b/a = 2
with a linear thickness variation in the # direction given by /(y, {) = ho(1 + an),

TABLE 4

Natural frequency parameter A for a moderately thick square plate

Simple plate Fixed plate
r A N\ r A A
m m
—N Extra- Reference — Extra- Reference
Mode 12 16 polation [23] 12 16 polation [23]
1 4-346  4-336 4-323 4-274 5349 5332 5-310 5:266
2 6-536 6490 6-431 6-318 7177 7121 7-048 6-954
3 7-885  7-832 7-744 7-593 8341 8273 8-185 8-057
4 8727  8-589 8413 8:251 9-077 8932 8747 8600
5 8727  8-589 8413 8-251 9-119 8975 8-789 8659
6 9-545 9415 9-247 9-068 9-836 9700 9-526 9-367
7 10-789 10-495 10-117 — 10-995 10-698 10-316 -
8 10-713 10-547 10-334 - 10-921 10-751  10-532 -
9 11-302 11-030 10-679 - 11-463 11-188  10-835 -
10 11-302 11-030 10-679 — 11-494 11-218 10-863 -
11 12-109 11-832 11-477 - 12-248 11969 11-610 -
12 12-800 12-:256  11-556 - 12-910 12-:366 11-667 -
13 12-800 12-:256 11-556 - 12-:918 12:375 11-676 -
14 13-133 12620 11-960 - 13-237 12724  12-064 -
15 13-169 12-824  12-382 - 13-273  12:927 12-481 -
16 13-688 13-197 12-565 - 13-769 13-278  12-647 -
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TABLE 5
Natural frequency parameter 1 for a simple square plate with variable thickness

=01 o=08
r A N r A A}
m m
— Extra-  Reference — Extra-  Reference
Mode 12 16 polation [1 12 16 polation [1]

1 4-687  4-675 4-660 4-661 5386 5-372 5:354 5-355

2 7-512  7-446 7-363 — 8576 8501 8-404 —

3 7-513 7447 7-363 - 8612 8535 8-437 -

4 9-534  9-436 9-311 — 10-944 10-829 10-680 -

5 10-927 10-692  10-389 — 13-342  12-080 11-742 —

6 10-932 10696 10-393 — 12-512 12-238  11-886 -

7 12-405 12-162 11-851 - 14-210 13926  13-560 —

8 12-407 12-164 11-852 — 14-265 13-977 13-607 —

9 14-870 14-269  13-496 — 16-581 15918  15-066 -
10 14-724 14-258  13-659 - 16-889 16-:308  15-562 —

11 14-883 14-378  13-729 — 17-018 16-481 15791 -
12 15993 15-396 14-628 — 18-:294 17-602 16712 -
13 15997 15400 14-631 - 18-402 17-701 16799 —
14 17-846 17-195 16-358 - 20-428 19:670  18-695 -
15 17-848 17-197 16:360 — 20-513 19742  18:752 -
16 19-514 18-174 16-451 - 21-467 20-047 18-222 -
TABLE 6
Natural frequency parameter A for a simple rectangular plate with variable thickness
(bla=2)
o =01 o =08
r A N\ r A A
m m
—N Extra- Reference — Extra- Reference
Mode 12 16 polation [1] 12 16 polation [1]

1 3-705  3-696 3-684 3-684 4245 4234 4220 4221

2 4728  4-698 4-659 — 5433 5-398 5-353 -

3 6-176  6:069 5930 - 7-078 6955 6797 —

4 6944 6876 6-789 - 7-955 7876 7775 -

5 7-982  7-693 7-322 — 9-100 8776 8-359 -

6 7-539  7-462 7-362 — 8-641  8:552 8-436 —

7 8521 8392 8-226 — 9775 9624 9-430 -

8 10-200  9-633 8903 — 11-547 10-831 9910 -

9 9909  9-551 9-091 — 11-377 11-055 10-641 —
10 10-549 10-307 9-995 — 14-574 13-145 11-308 -
11 12-695 11673  10-360 - 12-:072 11791  11-430 —
12 10949 10706 10-393 - 12-533 12:250 11-886 -
13 11-647 11-173  10-565 — 13-529 12-833  11-938 -
14 11-770 11373  10-862 - 13-336 13-017 12-813 —
15 12-992  12-315  11-445 — 16407 14-984 13154 -
16 14-193 13-:036  11-550 — 14-545 14-102  13-532 -
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1st 2nd 3rd 4th 1st 2nd 3rd 4th

5th 6th 7th 8th 5th 6th 7th 8th

9th 10th  11th 12th 9th  10th  11th 12th

13th 14th 15th 16th 13th 14th 15th 16th
(a) (b)

Figure 8. Nodal patterns for a simply supported square plate with variable thickness. (a) o = 0-1;
(b) = 0-8.

are shown in Tables 5 and 6 for two cases of o = 0-1 and 0-8. The thickness ratio
ho/a of these plates is 0-01. The convergent values of numerical solutions were
obtained for the two cases of divisional numbers m (=n) of 12 and 16 for the whole
part of the plate. Tables 5 and 6 involve the other theoretical values of the
fundamental frequency by Appl and Byers [1]. The numerical solutions by the
present method have good convergency and satisfactory accuracy of fundamental
frequency. The nodal lines of 16 modes of free vibration of the four plates of
bja=1,2 and o = 0-1, 0-8 are shown in Figures 8 and 9.

6.2.2. Fixed square plate

Numerical solutions for the lowest 16 values of the natural frequency parameter
A of a fixed square plate with a sinusoidal thickness variation in the #, { directions
given by h(n, {) = ho(1 — o sin ny)(1 — o sin ©{), are shown in Table 7 for two
cases of o = 0-3 and 0-5. The thickness ratio /,/a of these plates is 0-01. The
convergent values of numerical solutions were obtained for the two cases of
divisional numbers m (=n) of 12 and 16 for the whole part of the plate. The nodal
lines of 16 modes of free vibration of the two plates of & = 0-3, 0-5 are shown in

Tst ond 3rd 4th  1st 2nd 3rd 4th
5th 6th 7th 8th 5th 6th 7th 8th
=12 BEIH
9th 10th 11th 12th  Gth 10th 11th 12th
—HHE EHEE
13th T4th 15th16th ~ 13th 14th 15th 16th

(a) (b)

Figure 9. Nodal patterns for a simply supported rectangular plate with variable thickness
(b/a=2). (a) « =0-1; (b) & = 0-8.
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TABLE 7
Natural frequency parameter A for a fixed square plate with variable
thickness
oa=073 o =05
e A N A A
m m
— Extra- — Extra-
Mode 12 16 polation 12 16 polation

1 1-990 1-989 1-988 2-166 2-164 2-162
2 2:799 2:794 2-789 2:675 2:671 2:665
3 4-324 4-300 4-270 3-745 3-720 3-687
4 4-603 4-576 4-540 4-033 4-006 3-971
5 5-014 4-985 4-948 4337 4307 4269
6 6-523 6:476 6-415 5-148 5-046 4-914
7 6-860 6-747 6-601 5-378 5-323 5-254
8 7-274 7-153 6997 6:178  6:062 5914
9 7-694 7-575 7-421 6:671 6-422 6-103
10 8-675 8-538 8-361 6-446 6-331 6-183
11 8-868 8734 8-562 6992 6842 6:650
12 9-591 9-281 8-884 7-328 7-188 7-009
13 10-464 10-115 9-665 8-433 7-904 7-224
14 10:662 10378 10-013 8701 8378 7-963
15 10-790 10-520 10-172 8-941 8-596 8-154
16 11-373 11-032 10-593 8-765 8-521 8-207

TABLE 8

Natural frequency parameter A for a cantilever square plate with
variable thickness

o=1/2 o=1/8
r % N % Al
m m
—_— Extra- ,——*——  Extra-
Mode 12 16 polation 12 16 polation
1 1-743 1-742 1-741 1-541  1-540 1-540
2 2-459 2-456 2-451 1-886  1-883 1-880
3 3-866 3-846 3-819 2:579  2-561 2-537
4 4-096 4-070 4-037 3:057  3-035 3-:006
5 4-532 4-506 4-472 3266 3229 3-182
6 5-990 5-891 5-764 3-472  3-411 3-333
7 5918 5-873 5-816 4079  4-005 3909
8 6-655 6-542 6-396 4391 4243 4-052
9 7-032 6919 6775 4-867 4755 4-610
10 7-897 7-768 7-602 5230 5-003 5712
11 8-064 7-902 7-695 5:067 4944 4-784
12 8:352 8-121 7-825 5-544 5271 4921
13 9-615 9-286 8:862 6-:563 6038 5-363
14 9-782 9-525 9-195 5-801  5-655 5-467
15 9-889 9-617 9:266 6-:850 6401 5-825

16 10-339  10-022 9-614 7-018  6:680 6-245
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1st 2nd 3rd 4th 1st 2nd 3rd 4th
O O
5th  6th 7th 8th 5th 6th  7th  8th
a D
K| 1D 3| [ DK &
9th 10th 11th 12th 9th 10th  11th 12th
v
DF\C
13th 14th  15th  16th 13th  14th = 15th  16th
(a) (b)

Figure 10. Nodal patterns for a fixed square plate with variable thickness. (a) o = 0-3; (b) o = 0-5.

Figure 10. There are some changes of mode order in the 9th, 10th, 15th and 16th
modes.

6.2.3. Cantilever square plate

Numerical solutions for the lowest 16 values of the natural frequency parameter
A of a cantilever square plate with a linear thickness variation in the # directions
given by h(n, {) = hole + (1 — a)n], are shown in Table 8 for two cases of « = 1/2
and 1/8. The thickness ratio /,/a of these plates is 0-01. The convergent values of
numerical solutions were obtained for the two cases of divisional numbers m (=n)
of 12 and 16 for the whole part of the plate. The nodal lines of 16 modes of free
vibration of the three plates of « = 1/2 and 1/8 are shown in Figure 11. There are
some differences of mode shape and mode order between these three cantilever
plates.

6.2.4. Moderately thick simple square plate with variable thickness
Numerical solutions for the lowest 16 values of the natural frequency parameter

A of a moderately thick simply supported square plate with a linear thickness
variation in the #n direction given by /h(n, {) = ho(1 — an), o = 1, are shown in

| = > <dn . (
. N v ~d 0 L =
~1st . 2nd 3rd 4th 1st 2nd 3rd 4th
HHI H e
Lt sth - Tth j}h\ oth_ - sth o Jth o sth
%7\_ - 1 5 H =184

1 [ Spaonene [V E\_—__/_. [ &‘ [Crr——rr N
9th_  10th  11th  12th _9th  10th  1ith  12th
Mfas 25
UL 771 © = = | A =
13th  14th 1i5th  16th 13th  14th 15th  16th

(a) (b)
Figure 11. Nodal patterns for a cantilever square plate with variable thickness. (a) o = 1/2; (b)
o=1/8.
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TABLE 9

Natural frequency parameter A for a moderately thick simple square plate with
variable thickness

hy/a = 0-1 hoJa = 0-2
8 A N\ r A A}
m m
—A Extra- Reference — Extra- Reference
Mode 12 16 polation [7 12 16 polation [7]
1 5-327 5314 5-298 5-238 4-828 4818 4-806 4-758
2 8:054 7995 7-920 7-975 6791 6751 6-700 6-873
3 8:056  7-998 7-922 7-994 6802 6762 6-711 6-882
4 9761  9-683 9-582 9-649 7916  7-866 7-801 8-:048
5 10-835 10:658  10-431 10-654 8615 8501 8:355 8671
6 10-852 10:673  10-444 - 8-:618  8:507 8:364 —
7 11-879 11-712  11-497 - 9-285 9177 9-039 -
8 11-882 11715  11-502 - 9:292  9-183 9-044 -
9 13-487 13-105  12-244 - 10-247 10:016 9719 —
10 13-540 13-156 12291 - 10-315  10-069 9-753 -
11 13-381 13:166  12-511 - 10-254 10-115 9936 -
12 14-148 13793  13-337 - 10-742 10:512  10-217 —
13 14-150 13796  13-340 - 10766 10-534  10-236 -
14 15191 14-832  14-371 - 11-806 11-381 10-834 -
15 15191 14-832  14-371 - 11-420 11-185 10-882 —
16 16:097 15-386 14472 - 11-435 11197  10-891 -

Table 9 for two cases of thickness ratio /y/a = 0-1 and 0-2. The convergent values
of numerical solutions were obtained by using Richardson’s extrapolation formula
for the two cases of divisional numbers m (=n) of 12 and 16 for the whole part
of the plate. Table 9 involves the other theoretical values by Aksu and Al-Kaabi
[7] and it shows good convergency and satisfactory accuracy of the numerical
solutions by the present method. The nodal lines of free vibration of these two
moderately thick plates with variable thickness are shown in Figure 12.

1st 2nd 3rd Ath 1st 2nd 3rd 4th
5th 6th 7th 8th 5th 6th 7th 8th
)
[
oth 10th 11th 12th 9th 10th  11th  12th
—~
13th  14th  15th  16th 13th  14th  15th  16th

(@) (b)

Figure 12. Nodal patterns for a moderately thick simple square plate with variable thickness. (a)
hy/a = 0-1; (b) ho/a = 0-2.
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7. CONCLUSIONS
By adopting the concept that the behaviour of a rectangular plate can be

analyzed from the geometrical, material and mechanical properties at the discrete
points uniformly distributed on the plate, an approximate method was proposed
for analyzing the free vibration problem of various types of rectangular plates with
uniform or non-uniform thickness. As a result of numerical work, it was shown
that the numerical solutions rendered by the proposed method had good

(1)

nvergency and satisfactory accuracy for various types of rectangular plates with

uniform or non-uniform thickness.
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APPENDIX A
F111 = F123 = F134 = Fl46 = F167 = F178 = F188 = 1,

Fopy = Fos = Fozs = Fosy = Foge = U,
Fiss=v, Foy = VU, Fi = Fy3 = —HU,
Fouy = Fiss = —1, Fips = —J, Fp = —k,

Fyr =1, Fyy = —ux, Fie = 1, other Fi., 5., F. =0,

I=pu(@=v)(ho/h), T =2u(1 +v)(ho/h), k= (1/10)(E/G)(ho/a)(ho/h).

APPENDIX B

Apl = Yp15 ApZ =0, Ap3 = Yp2, Ap4 = Yp3,

ApS = 09 Ap6 == ’Yp4 + V’YpS; Ap7 = Yp(n
Aps = 7,7, B, =0, By = pyp, By = wys,

Bi=0,  Bs=pum  Bs=
By = u(vyp + 1ps)s Bys = s,
Coike = U + KieYpr)s  Cooer = )2 + KiePys,
Coare = Jirvper  Coar = TueYpss Cosee = Diyps,  Coowe = — 1y, Core = — s,

Cuir = 0, o] = [P, n = B, T = pup,
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T = —upy, 723 = i, Tas = 1P,

V= —ufy,  Tn=uPy, Vu=Pi  Ju= —Lif;,

Tas = B, Jar = WP, 7ss = — LBy,
Vs6 = Vﬁﬁ, Vs7 = ,uﬂ/'ja Vo3 = —Jf/ﬂz/a Voo = Hﬂjja
Y1 = P, Tn = —puKify, 716 = 1P,

T8 = Pin Vo= —kify, e = Bi, Vs = Py other y,x =0, B;= Bip;.

APPENDIX C
o = Ausion = iaios = Qisios = Airiois = Ansios = 1, dision =V,
Ao = Aasojp = Aasojz = acojis = 270555 = A2gojjc = 1, gz =V, 230002 = 0»

allpijm'

i J
Z ﬁikApe [ahekOuv - a/xek/'uv(l - 51(1)] + Z ﬂ/{Bpp [ahz’Ofuzr - ahei/uv(l - 5//’)]
- /=0

k=0

i J
+ Z Z ﬁ ﬁ// pek/ahek/m(l - 5k15//)
k=0/¢=

where h=1,2, p = 1,2,...,8, i=1,2,....m
u=0,1,...,i(h=1),0,1,....j (h=2).

2 Ape[ero — Gei (1 — 0ii)] + Z Bie Brelqeor — Geie(1 — 64)]

i J
+ Z ﬂ[/cﬁj/ Cpek/’ q_ck/(l - 5/c15/j)

k=07/=0

8
Gy = Z

— Vi UigUjr -



